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1. Introduction

The paper on shock waves in elastic—plastic solids (11* by Germain and

the author of this report, is concerned in the main with the application of

a generalization of classical rate—independent constitutive relations for

elastic—plastic media to the analysis of the propagation of plane compressive

waves. Waves exhibiting both continuous and discontinuous stress profiles were

considered. Since the generation of shock waves is intimately associated with

non—linear effects, the generalization of classical theory adopted incorporated

finite deformation kinematics. It was found possible to formulate the theory

so that the mean hydrostatic pressure component of the stress tensor and the

deviator or distortional components appeared in separate terms as did the dila-

tation and the strain deviator. Thus the extensive literature on pressure—

volume relations developed in connection with the hydrodynamic theory of shock

waves in metals could be utilized directly for the analysis of wave propagation

in iaeta]swhen shear strength also influences the motion. The separation of

pressure and shear effects was carried out on the basis of the structure of the

free energy function for thermo—elastic—plastic deformation in a physically

meaningful manner which also satisfied the invariance requirements of nonlinear

continuum mechanics. For example, the latter links the influences of density

change on direct stress and on shear stress cou~ onents which follows f rom the

structure of finit, deformation thermo—elastic theory.

In the analysis of shock waves involving plastic flow using ra te independent

theory Ill, it was found that a shock wave solution could not be determined on

this basis when work hardening was considered or when part of the plastic work

exp .nded is transformed into internal energy associated with breakdown of the

*Numbers in square brackets refer to the references listed at the end of the
report.
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crystal lattice by the generation of dislocations. This component of energy

absorption by the metal has a negligible influence on the thermo-elastic state

of the element and so does not increase the entropy, In contrast to the rest

of the plastic work which is dissipated into heat. Thus knowledge of the

work done on the material during passage of a shock wave does not determine

the new internal energy in the thernio—elastic system since part is absorbed

in forming the dislocation distribution. This prevents direct evaluation of

• the state after passage of the wave. Similarly the work absorbed in plastic

flow which determines the yield stress of the work—hardening metal after passage

of the shock wave can only be calculated from a study of the shock structure

which calls for a rate type plasticity law to correctly incorporate the energy

dissipated in the shock wave. Plastic work is expressed by a time integral of

a product of the yield stress and the plastic strain rate and cannot be deter—

mined directly in terms of variables only expressing properties before and after

passage of the wave.

In view of these diff iculties, a hypothetical rate—dependent plasticity

law was postulated which permitted the development of a theory which would

determine the shock structure for a steady wave and hence the variations of

strain, temperature, plastic strain and plastic work with position through the

wave and hence the thermo—elaatic state of the material after passage of the

wave. Moreover it was shown that the choice of rate— law for the plastic strain—

rate did not influence the sequence of values taken on by these dependen t vari-

ables but only their prof~1es in space. The plots of any three of the dependent

variables e.g. temperature, p’ itic strain and plastic work against the other,

i.e. the strain, would be independent of the rate law. In spite of this, it is

2
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V worthwhile to consider experimentally motivated rate—laws so that actual wave

profiles can be evaluated. The results mentioned concerning the deduction of

partial information about the solution,vithout knowledge of the precise rate

law, is a generalization of the Rayleigh line concept for steady waves in ma-

terials defined by simpler constitutive relations. For example, in the theory

of shock waves in gases, or equivalently hydrodynamic analysis, the knowledge

of the work done on the material due to passage of a shock is sufficient to

determine the final thermodynamic state of the material. Essentially because

of the additional internal variable: plastic strain, the more complicated situ-

ation already described arises in plastic analysis.

In the next section the formulation of thermo—elastic—plastic constitutive

relations for metals incorporating a rate of plastic strain influence will be

discussed, and compared with the rate—independent form. Subsequently the appli-

cation of these for analyzing plastic wave propagation phenomena will be con-

sidered. In discussion of the influence of rate—dependent analysis, other

characteristics which generate analogous effects on wave profiles will be con-

sidered.

2. Finite Deformation Thermo—Elastic—Plastic Theory

The constitutive relations to be applied comprise a generalization of the

finite deformation theory described in reference [21. Because non—linear effects

exert a major influence on shock wave generation and propagation, it is impor-

tant to have a correctly formulated constitutive relation which incorporates

both geometric and material nonlinearities. The kinematics [2) is based on the

matrix product representation of the combined effect of elastic and plastic

deformation:

(1)

• -- •~



where is the deformation gradient matrix ~x~/aX~ where x~ is the

position vector of an element in the deformed configuration and X~ for

the element in its reference configuration. 9 is the deformation gradient

matrix for plastic deformation relative to the initial undeformed state and

the elastic deformation gradient relative to a state unstressed after

plastic deformation. At the current time t , F — F (x, t) since in general

the deformation of a body will be distributed non—homogeneously

For the study of the propagation of plane waves of one—dimensional strain

as generated in a plate slap experiment, principal directions remain fixed in

space and in the body normal to and in the plane of the wave front. Thus the

principal components only of F need to be introduced:

/A 1 0 O \
Fa (0 A 2 0 ) (2)

0 A 21
’

Conponents A are the stretch ratios of the length in the direction I after

and before the deforma tion, and A 3 A
2 

for isotropic media because of sym—

metry in the plane of the wave. Then taking natural logarithms of the total,

elastic and plastic stretch ratios determines the natural strains:

c
i 

— ln(A
1
) , c~ ln(A~) , - ln (A~ ) (3)

and the relation (1) for total deformation reduces to additivity of the elastic

and plastic strain components

(4)
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as discussed in [3] and [1]. For plane wave analysis the strains will in

general be functions of time t and of position along an axis normal to the

wave—front. The latter could be the Lagrange coordinate X
1 

in the reference

geometry or the Euler coordinate x
1 

in the current configuration. 
V

The stress a and entropy a are given in terms of the density p , the

the elastic deformation ~e and temperature 0 through the Helmholtz free

energy function Y by the thermo—elastic relations:

_ ~~~~~~~~ (5)

(6)

As discussed in [4) and [5] the free energy function is taken to have the

form

— ? (Fe O)+,(W) (7)

where w is the plastic work per unit mass. The first term on the right

hand side expresses the thenno—elastic response and the second term the

energy stored in the dislocation distribution resulting from plastic flow.

The latter has little influence on thermo—elasticity as confirmed by the

insensitivity of elastic constants to plastic flow. The free energy corn—

ponent ‘V constitutes only a small part of the plastic work w

— (l—y) w , y ~ 0.9 (8)

• the rest being dissipated into heat.

The thermo—elastic component of the free energy is taken to have the

form

5
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‘V (c~ , , c~ , 0) f ( I
i~
8) + h (J2, J3) (9)

where I
l 

is the first invariant of the elastic strain tensor:

— + + c~ (10)

and and are the second and third invariants of the elastic strain

deviator tensor ee

~ [(e~)~~+ ( e ) 2 + (e~)2J (11)

— -
~~ [(e~)~~+ (e~)~ + (e~)~ ] (12)

Since 1
~ 

iø equal to the volumetric strain, plastic flow being incom—

pressibie, f( 1
1
,0) prescribes the pressure, volume, temperature relation

of the metal. Under general loading the pressure p is defined as

- a
11/3 , the average of the normal compressive stress components, and the

same dilatation law arises. The function h(J
2
,J
3

) prescribes the deviator

or distortional components of the stress and has been further simplified to

2pJ
2
/p
0 

in the analysis. The temperature 8 is not included in this term

since shear strain does not usually stimulate thermo—elastic coupling.

In plane wave experiments, prior to the arrival of release waves from

the free lateral surface of the specimen, the lateral strains are zero:

• 

V 
c
2

c
3

0 (13)

and since plastic deformation is incompressible

— I
~ 

— in (p
0/p ) (14)

where p0 ii the density in the reference state.

6



For this special deformation the stress components can be expressed in terms

of the longitudinal total and plastic strain components, and c~ respec— V

tively, by using (4) and (13) to obtain elastic strains and then applying (5)

[see [1], eq.(44)J
a ~~~~~~~~~~~~~~~~~~~~~~ (15)

(16)

The pressure p is given by the hydrodynamic relation already mentioned and

prescribed by the f unction f(11,O). It is often convenient to express the

pressure — temperature — dilatation relation in the form

p(s,e
1
) , O(s ,c1) (17)

since s can be a convenient independent variable for adiabatic loading

Equations(l5) and (16) indicated that the separation of dilatation and

deviator terms in (9) does produce a coupling of the deviator stress corn—

ponents with volume change according t~~he factor p/p0
We note that in addition to the total longitudinal strain c~ , the

plastic longitudinal strain component c~ acts as an additional. state vari-

able which permits determination of the stress for prescribed temperature or

entropy. This is so without any statement concerning the laws of plasticity.

The rate independent theory of plasticity described in detail in [2) and

[1] adjoins a work—hardening yield condition which must be satisfied for

plastic flow to take place, in the form that an isotropic function of the

deviator of p
1
a is prescribed by the plastic work v and the temperature

8 • For our particular problem this condition is contained in the expression:

- 

7
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Y(w ,O) + p~p
’(o— °2~ 

> 0 (18)

where Y is the yield stress in tension or compression at the initial

density and temperature 0 ; the upper sign corresponds to longitudinal

tensile yield and the lower to compressive. The equality sign permits

plastic flow to iake place and the inequality indicates that the element is

inside the yield surface and hence currently subject only to elastic

strain increments. When plastic flow takes place the plastic work per

unit mass is determined from:

w — p~
1 

~
°i 

— 0
2

) c~ (19)

or , using (18)

p
0 

w — ± Y (w,O) ~~ (20)

with the same sign convention.

The relations prescribed are appropriate, for example, to determine

the stresses generated by a continuous adiabatic process def ined by a

given variation of c
1
(t) from a prescribed state. If the element is ini-

tially subjected to stress inside the yield surface, so that the inequality

in (18) is satisf ied, only elastic increments of strain can occur so that

(21)

and (15) and (16) with p determined by (17) give the stress variation

since c~ is known for the initially prescribed state. When plastic flow

takes place the equality (18) with (15) and (16) yield

- 

8 
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3c~ /2 c] + Y/(2p) (22)

The part yw of the plastic power which is dissipated into heat causes

an entropy increase according to

8 s ’y w (23)

Combining this with (20) and changing the independent variable from t to

c 1 yields the differential equation system

dc~ds dv 1p
0
8 i— = p

0 
y -i-- ± Yy i— (24)

1

The variable c~ can be eliminated using (22), and utilizing the known

functions 0(s,c
1
) from (17) and Y(w,0) gives a pair of differential

equations to determine w(c
1

) and s(c~) using the known initial state

to provide initial conditions. The plastic strain component is given

by (22), Y(w ,0) being obtained using O(s ,c
1
) , and then the stresses can

be evaluated from (15) and (16). Note that the time variable does not

appear explicitly in the solution for either elastic or elastic—plastic

• deformation, in conformity with the adoption of the rate independent plas-

ticity constitutive relation. It might, for example, be convenient to

utilize the variable C
l 

as a pseudo “time” in all rate relations considered

so far in this section, for example equations (19) and (20), and evaluate the

stresses without introducing real time t

Consider now a modification of the hypothetical rate dependent plasti—

city law of [1] to bring it into conformity with experimental findings.

Bquations (15) and (16) show that the stress can be determined in terms of

9
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total and plastic longitudinal strain components. These are deduced from

the thermo—elastic stress law (5) after expressing the elastic strain com-

ponents in terms of and t~~ by means of (4), (13) and the incompressi-

bility of plastic flow. These stresses can be substituted into the yield

condition and a rate of plastic strain prescribed in terms of the extent

to which the yield condition has been violated. If the stress point lies

inside or on the yield surface the rate of growth of plastic strain will

be zero.

Whatever the law of plasticity (15) and (16) yield the relation:

p
0 ~ —o

C ~~~~~~~~~~~~~~~~~ 
1 2 (25)

1 2 1 p 2ii

so that the yield condition (18) can be written:

Y(w ,O) + 2p(c
1
— -

~~ c~)> 0 (26)

Thus a convenient means of expressing over—stress is through the variable

z , defined by

23 p 2 Y
2 C

l) 
— 

~~~ 
(27)

This will be positive when the yield condition is violated and negative

if the stress point lies inside the yield surface. Thus an over—stress

condition of the Malvern type can take the form

— (C
l 

— 

2 c~
) k(z) (28)

where k is an appropriate function. The factor (c
1 — -} c~) is intro-

duced to ensure the correct sign of the deduced plastic strain rate. The

10

I
- V V



V ~~~~~~~~~~~ ~~~~~~~~~~ V 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V

yield stress function Y(w ,8) now has a changed significance since at yield

the plastic strain—rate will be zero, and the yield stress must be exceeded

for non—zero plastic strain—rate to occur. Thus k is a monotonically

increasing function with k(0) 0.

Using (25) the rate of plastic work is now given by

~~~~~~~~~~~~~~~~~~~~~ c~ ) ~~
0

The adiabatic entropy growth relation (23) can still be expected to apply, and

(28), (29) and (23) combined with the thermo—elastic relation specify the corres—

• ponding thermo—elastic—plastic constitutive relation.

• If a prescribed variation c1
(t) from a known state is imposed under adia—

• batic conditions,(23) , (28) and (29) constitute a system of three differential

equations to determine w , E~~~ and a , when use is made of the known function

O(s ,c1
) from (17).

The introduction of a strain—rate effect in combination with a work bar—

dening law introduces “a strain—rate history effect” of the type demonstrated

by Klepaczko [6] and mentioned by Clifton [7) (p.103) in his article on plastic

waves. Thus , for a given plastic strain increment, more plastic work is expended

if the straining is carried out at higher strain—rate since the stress is higher

according to (28) , (27) and (25) . If straining is first  carried out with an

initial strain—rate , 
~ 

, until a prescribed strain is achieved, and thereafter

the strain—rate is changed to C
f 

for a particular strain during the second

part of the stepped strain—rate test, the stress would be higher had the initial

strain—rate Cl been bigger , since the plastic work v and hence the equili—

briurn yield stress Y ( w 48) would be larger. Qualitatively, such behavior has

IVV 

11

~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~• 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



_ _  V
.-— 

• I
been observed by IClepaczko (61. As discussed in the following section , such a

strain—rate history dependent type law is incorporated into the analysis of

shock wave structure presented in (1].

By taking the yield stress Y to depend on c~ , instead on w

which in the case considered in this report of longitudinal monotonic

straining is equivalent to the commonly used generalized plastic strain

• I ~~f ( ~ ~~~~ dt) (see Hill (8] p. 30) , the appearance of a rate

history effect is avoided , since then the rate at which the stress history is

carried out does not affect the equilibrium yield stress Y . As described

in the following section this change does not greatly modify the analysis of

straining in wave propagation based exactly on the elastic—plastic theory

presented , although a good approximat ion is more easily obtained. A some-

wha t similar plastic strain—rate and total plastic—strain dependent thermo —

elastic—plastic constitutive relation has been discussed by Clifton [l](p.l3l

f f . ) .  This also contained a vector of parameters which characterized the

internal structure of the material. The plastic work v could be such an

internal variable and the work—hardening theory can be considered to be

• analogous to such a law .

3. Wave Propagation Phenomena

• As mentioned in the Introduction, certain difficulties in obtaining shock

wave solutions for strain—rate independent elastic—plastic materials were

encountered for work—hardening plasticity laws. Related rate—dependent laws

were therefore studied which result in dual shock structure of an elastic wave

exhibiting discontinuous properties attached to a steady wave associated with

~he development of plastic flow. This corresponds to an over—driven wave forcs4

to t ravel at a speed higher than elastic wave velocity (see [7], p. 148 or

Herrmann [9) ,  p. 10) . It is not uncosmon to refer to the combination as a

12
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shock—wave, terming the variations of properties in the steady wave the

study of shock structure. We shall term these two components the shock wave

and the steady wave with invariant profile.

A number of peripheral questions arise in the theoretical analysis of

the phenomenon and in connect ion with experimental measurements. For example

it was commonly the practice to analyze steady waves as having an invariant

prof ile for measurements taken at a fixed point in space, that is to measure,

say, the velocity v(x1,t) for varying t and fixed x — x
1 
. The Euler

coordinate x
1 

denotes a fixed point in space as the material moves across

it. It is now realized that measuring devices are commonly fixed to a material

element and hence yield the data v(X
1
,t) where the Lagrange coordinate

defines a position in the reference configuration, that is at a particular

material element. It seems plausible that a wave which has an invariant

profile at each point in space would also have one at each point in the body.

However, since the constitutive relation for elastic plastic media is highly

non—linear, it seems unlikely, without further consideration, that the trans-

formation from one coordinate to the other could maintain the invariance.

The motion along the axis x of the cross—section labelled X in the

reference configuration in Fig. 1 is given by

x — x(X,t) (30)

where the subscript to the coordinates has been dropped for one-dimensional

waves. The stretch ratio A is given by

13
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(31)

Hence
2

ax ax av
— — — — —

at atax ax

where v is the particle velocity

ax

If there is a steady wave in the Lagrange frame which travels without

change of profile when considered plotted in the reference configuration,

then dependent variables o,v and A are functions of (X — CL
t) only,

when CL is a constant — the wave speed in the Lagrange sense, i.e. along

th. reference configuration. Thus

A — A (X_CL
t) , v = v(X—C.~t) (34)

Relation (32) then takes the form

_ C
L A ’ — v ’ (35)

where the prime denotes differentiation with respect to the single argument.

Integrating (35) gives

14
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v + CLX — constant (36)

Now, corresponding to propagation velocity C
L 

along the reference frame ,

the propagation velocity along the deformed body (i.e. in space) is

CL
A + V  (37)

since travel dX in the reference state is travel relative to the deformed

material through the distance AdX , the material meanwhile moving with

velocity v . This is the Euler wave speed

C
E

C
L
A + v  (38)

and by (36) is therefore constant . Since constant values of A ,v and a

propagate with velocity CL in the reference frame with coordinate X

they travel with CE in space, so that

A — A (x — CEt), -— — — etc. (39)

Thus (34) corresponds to a steady wave in space (Euler coordinates).

Note that for a steady wave traveling into an undisturbed body (e.g.

as discussed in [7) p. 148 and 19] p. 10) A — 1 and v — 0 at the wave

front so that CE — C
L 

by (38). Of course the profiles of stress a , 
-

velocity v or stretch A are not the same expressed as functions of X and x

Since, for a steady wave to develop, it must be propagating into material

homogeneously stressed and at uniform velocity, if axes are chosen which

bri ng the material ahead of the wave to rest , and if material uniformly

15 
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strained as that ahead of the wave is used as the reference state , the

Euler and Lagrange wave speeds will be the same for all cases .

To extend the consideration slightly, following Clifton’s development

(7) p. 149), the equation of motion in the reference frame is

ax Oat (40)

Since there is no lateral motion in one—dimensional strain situations,

cross—sectional areas are identical in the reference and current configurations

so that the nominal stress in (40) is equal to the uaual Cauchy or “true”

stress in the deformed body . For a steady wave with velocity CL in the

tef erence frame; (40) becomes

a’ — — p
0 
C
t
v’ (41)

which combined with (35) gives

a ’ — p
0
C~ A’ (42)

which integrated is:

a — p
0 

C~ A + constant (43)

Thus the stress and stretch ratio are linearly related in a steady

wave, this relationship commonly being called the Rayleigh line. Thus in

spite of the non—linear irreversible constitutive relation governing rate

dependent elastic—plastic response at f l n t te ~arnLn , thu constraint of a

16
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steady wave forces such simple connection between the variables. It is

important to observe that these results depend only on the compatibility of

the kinematic variables (32) and the equation of motion (40) and their form

does not depend on the constitutive relation of the material.

It is thus clear that these results follow directly from the conserva-

tion laws as, for example, developed in (1] Section 2. The discussion of this

aspect is related to the analogous studies by Duvall [10] and Johnson and

Barker [11]. For the x—axis chosen so that the wave is propagating in the

direction of increasing x into material at rest, this coordinate being de-

noted by x , let v(x,t) be the particle velocity. The relation for conser-

vation of mass for a wave of one—dimensional strain is ((1], section 2):

(pv) — 0 (44)

If the Euler wave velocity, ~~~ reversed, thus now directed towards

decreasing x , is superposed on the whole configuration, the modified x

coordinate will be: 
-

z x C ~t (45)

and the particle velocity relative to this coordinate system will be:

v v — C~ (46)

Th steady wave will be transformed into a stationary wave, so that

17

L - V V V V ~~~~~~~ - ---~~~~~~~~~~~ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- V __VVVVV_ ~~~~~~~~~~~~~~~~~ ~V ~~~~~ ~__ •V_~V~_~ ~~~~~~~~ 
VVV _VV.V_.~V _ •_ __~~ _V_V_VV V_VVV V_ — - •._V__ _ VV_V____V__ - V_ _ V  - V -~ V.~VV_~V V~~ VV

V v(x) — v(x , t) — C
E 

(47)

The other dependent variables p, a and A will not change but will become

functions of x only for the stationary wave:

• p(x ,t) — p( ) ,  a(x ,t) — a(~ ), A (x,t) A(i~) (48)

The equation for conservation of mass will now be

— 0  (49)

which, since p — p (x) , reduces to

~~ (P~ ) — 0 or Pit — a (50)

where a is a constant of the motion . Since ahead of the wave v — — CE

and p — p
0 
, the density of the undisturbed material,

P v — m — — P 0C~ (51)

Note that this integral of the continuous motion in the steady wave takes

the same form as the J~~p condition across a surface of discontinuities in

the dependent variables (see (11, Section 2). The reason for this is that

between any two cross—sections which propagate with the wave, an invariant

diøtribution of density, velocity, stress and stretch is maintained so that

no contributions to the conservation relations are introduced by the material

between the sections.

18 
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An exactly similar deduction applies for conservation of momentum and

energy, leading to the integrals of the motion; identical to the jump rela-

tions ([1] Sections 2 and 8)

—
~~~~ + p

2 — P  (52)

and

e + v2/2 - a v/ rn — E (53)

where e is the specific internal energy, and P and E are constants.

In (53) adiabatic loading is considered as commonly acceptable for the ana-

lysis of wave propagation. Since no lateral strain occurs in plane waves,

mass conservation demands

p
0 

— pA , or A — p
0
/p (54)

and (51) yields

v + A C ~~~~O (55)

for all x .  Thus

( ]  + [AJC~ — 0 (56~

where ( ] denotes the difference between the values of the enclosed variable 
V

at any two cross—sections propagat ing with the wave. Now since -

[v i (v] (57)

b c*use th. two velocity variables differ only by the superposed - C~

(56) becomes, for arbitrary choice of axes in the direction of wave propagation:
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[vJ — [A ]C
E (58)

which is equivalent to (38) when C
L 

— C
E as has been established for the

case when the material ahead of the wave is at rest .

In a similar way (52) with (51) can be written

— a — POCE ~ —

hence

[a] + Po
C~[V] = 0 - (59)

and using (58)

[a] — p~C~ [XI (60)

which is equivalent to the Rayleigh line expression (43) . A similar mani-

pulation on the energy balance equation (53), using the relation ([1], eq.

(9))

[ab) — [b] + [a] ~ (61)

where the superposed bar indicates the arithmetic mean of the enclosed

variable values , gives the well known anergy relation :

a + a2p
0

[e] • o[X] — 
2 ~~2 

—A
1

) (62)

Note that if values of the stresses and stretch ratios are known before 
V

V and after passage of the wave, the work done in deforaing the material and

the increase in internal energy is given by (62) without introducing addi—

itional information about the constitutive law of the material.

In view of the remarkably confining constraints which the existence

of a steady wave impose. on the dependent variables: stress a , velocity v ,

20
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and stretch ratio A , one may wonder whether such waves are produced in

practice. That a close approximation to such a configuration is achieved

in plate slap impact experiments has been demonstrated experimentally by

Johnson and Barker (11]. Duvall [ l2) , (p.  102) , gave a qualitative descrip-

tion of the stability of a steady wave in terms of the distortion of the

Rayleigh line and the influence introduced by this towards re—establishing

the steady conf iguration. Bland [13) investigated analytically the develop-

ment of a steady wave for a Kelvin type viscoelastic solid with a nonlinear

equilibrium response. He showed by asymptotic methods that any monotonically

increasing loading pulse would tend towards a steady wave configuration, and

that for a step pulse, the time of forma tion is of the order of f ive times the

shock thickness divided by the excess convective velocity. Particular cases

of ela.tic—plastic waves were evaluated by Clifton [14] who demonstrated the

generation of steady waves. The matter has been reviewed recently by Herrmann

[91 and can clearly play an important role in the investigation of rate effects,

particularly at the higher end of the range.

The fact that the work done on the material as a shock wave traverses it,

(62), is not based on the constitutive equation of the material demands that

the equation adopted, or equivalently the physical mechanism envisaged, must

be flexible enough to permit the required absorption of energy. Part of the

work is expended in producing pure volume compression which is reversible on

pressure release, the rest is associated with distortion and involves both

elastic and plastic deformation. The latter is irreversible and involves

dissipation of mechanical work into heat according to (23). A rate-dependent

or visco—plastic law incorporates the required flexibility to absorb mechanical

21 
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energy since an increase in the rate of strain requires the stress driving V

it to increase and hence also the absorption of work for a given strain

increment. Since the shock—wave propagation speed for a material is insensi-

tive to changes in loading and temperature, for an approximately constant wave

amplitude the strain rate increases as the wave becomes thinner, and such a

change in configuration can accommodate the energy absorption requirement.

If the coefficient in the strain—rate dependent expression for stress is

large, only moderate thinning will be required to provide a certain energy

absorption, but a smaller coefficient in the strain—rate term will call for a

narrower shock wave prof ile, and hence a higher strain rate. A simple means

of evaluating this situation for a simpler elastic—plastic law than that con-

sidered in [11 has been presented by Kelly and Cillis [15].

The rate independent law suggested in [1) to permit the analysis of elas-

tic—plastic shock waves in a work hardening material, was to replace the plastic

work generation relation (20) by an incremental relation across the shock:

p [w] — 1[±c~] (63)

where, as in Section 2, the square brackets indicate the jump in the enclosed

variable across the shock, and the bar , the average of the values of the

variable on the two sides of the shock. It does not appear that the plastic

work defined in this way ~euid be made consistent with the total work defined

by (62) , since there is no mechanism to increase the flow stress above the

;tstic yield to achieve the required energy absorption and to meet the con—

sUsint of the Rayleigh line relation. The fact that plastic flow must pro—

vide the mechanism for the dissipation of energy was discussed in Section 8

of (11.
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The steady wave analysis developed in that Section, based on a strain—

rate dependent work—hardening plasticity law, includes f ull considera tion of

thermo—mechanical coupling according to the elastic—plastic relations described

in Section 2 of the present report. Although implemented in [1] for the hypo-

thetical rate law which permits some plastic flow below the static yield, it

applies for general rate laws which incorporate a strict static yield stress.

Since steady waves which propagate into material at rest are normally

considered , we denote the wave speed based on labora tory or Euler coordinates

by C for , as already shown, it is equal to the Lagrange wave speed def ined on

the reference configuration. Then, according to (45), the stationary wave

coordinate x is given by

x x — C t  (64)

in terms of which the stress, velocity and strain can be expressed. The materi-

al derivative of a function g(x) is given by v(dg/dx), so that the strain—

rate law (28) takes for form

V I P_ uC1 3 pv — = — -j c1
)k(z)  (65)

dx

and the plastic work relation (29):

2 3 2
v — — 

~~~~~ 
(t ~~ 

— s~) k(z) (66)
dx

The variable v can be eliminated from (65) and (66) by means of the mass

conservation relation (51) , v — m/p , and the conservation relations (52)

23
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and (53) can be used to provide expressions for the plastic strain and the

plastic work ((1], eqs. (71) and (72)):

p 2
= -

~~ c~ + (P — (p+ 
~~~

— ) )  (67)

2 3p 2 2
(l — y ) w  — E — 

~~~~ ~~~~~~~~~~ 
— ~~~~ (P_(p+~~ _ )) ( P_(p+ !_) ~~~~~ ) (68)

~ 2p 8~ p p p po
where è(p ,O) is the specific internal energy for pure dilatation, and is

associated with the corresponding free energy component f in (9). Eqs.

(65) to (68) form a system of four equations for the variables which define

the state of the material c] , 0 , and w , which are all functions of

position x in the stationary wave. The fact that two of the equations are

differential and two algebraic gives a particular structure to the system

which is discussed at some length in Section 8 of [1]. This permits a solu-

tion in the form of an elastic shock combined with a steady plastic wave in

which the variables change continuously. This combination corresponds to

the over—driven wave discussed, for example, in [9], p. 10. The strength of

the wave can be expressed by the mass flow m , which determines the elastic

shock front across which ~~ and w do not change The post elastic—shock

values of the variables then form the initial conditions for solution of the

system of equations which determines the plastic steady wave. Eqs. (67) and

(68) can be used to eliminate and w from (65) and (66) which results

in a pair of differential equations for c~ and 0 . Integration from the initial

conditions is continue-i until the rate of plastic strain drops to zero, and

24 
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this condition determines the equilibrium stress after passage of the wave.

If the wave prof ile as a function the space variable ~ is not needed

but only the ranges of stress, strain etc. occurring in the wave, the quotient

of (66) and (65)

V~~~~
._

~~~~~k (E ;  — -~~ ?‘ ~69)
d~~ ~O ~ 2 1 ’£1

can be used to obtain a single differential equation which determines the

ranges of these variables. Substitution into (69) for 4 and w from

(67) and (68) yields an ordinary differential equation in the (r
1 ‘ 

0)

plane with the post elastic—shock values as initial condition. The solution

values (c
1 , 0) give an image of the steady wave in this plane, and cal-

culation of the corresponding values of 4 and w from (67) and (68) will

determine the exten t of the wave profile since it terminates when plastic

deformat ion ceases. It will be observed that in forming (69) as the quotient

of (66) and (65), the strain—rate response function (c1 
— 3 t 2 ~~~~~ can-

cels, and thus does not influence the stress and strain range of the wave.

This is consistent with the Rayleigh line concept which is not dependent on

the precise strain rate law, although the space distribution of the wave is.

For a smaller value of mass flow , m , a precursor elastic wave will be

deduced which is propagated ahead of the plastic wave. The latter extends

from the yield stress, where the plastic strain rate is zero through a region

of plastic flow until an equilibrium stress is reached for which the rate of

plas t ic  Flow Is again zero . Such a wave corresponds to the underdriven

w,ve discussed In [9] , p. 11.
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These analyses incorporated complete thermo—mechanical coupling according

to the thermo—elastic—plastic theory presented in Section 2. The major con-

tributor in this regard is the dilatational component of the internal energy

in (68), which is perhaps best represented by the mie—Gruneisen equation

of state deduced from hydrodynamic analysis. Other analyses of the problem

have been limited to the adoption of a purely mechanical theory without explicit

thermo—mechanical coupling. Clifton’s theory, [7] , is limited to moderate

stresses involving little entropy change, which is assumed to t~e zero in the

analyses of plane waves ([ 17) , pages 135 and 137). Herrmann formally neglects

thermo—mechanical coupling ([9] p. 2) but in his analysis of plane waves

in an aluminum alloy [16] he uses the Hugoniot relation to formulate the

equation of state, which incorporates thermo—mechanical coupling in the dila—

tational component of the deformation, which , as already mentioned normally

comprises the major component.

As mentioned in Section 2, work—hardening rate—dependent elastic—plastic

analysis introduces a strain—rate history effect, since for a given strain

increment, the plastic work and hence hardening is greater at higher strain

rates. This is of the nature of such influences observed, for example, by

Klepaczko [6], but may be too pronounced , since He r rmann [16] cites evidence

that strain hardening provides an adequate basis for analysis. However , the

structure of the wave analyses described above including thermo—mechanical

coupling with an internal variable, plastic work, w , suggests how such a

variable can be incorporated into steady wave analysis, when it is not tied

to the physical quantity: plastic work. A functional relatio ” not so constrained

could, perhaps be selected to provide an adequate representation of the strain—

rate history influence.
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It is well known (Hill [8] p. 39) tha t for rate—independent elastic—

plastic isothermal theory based on the Mises yield condition, work hardening

and strain hardening give identical responses. For rate dependent analysis

this is not so, and in particular the rate history influence of work hard-

ening already discussed does not arise if strain hardening is assumed. For

a prescribed plastic—strain increment in monotonic loading, the equilibrium

hardening will be independent of the rate at which the strain was imposed.

A strain dependent version of the theory already described is therefore of

interest. If the complete thermodynamic structure is maintained this change

will not modify the theory appreciably since evaluation of plastic work is

needed to express the entropy increase due to the irreversibility of plastic

flow (23).

For a strain hardening material, the yield strain y in (18) would in

general be a function of the generalized plastic strain, £ ~~~~ and tempera-

ture, but for monotonic loading in a plane wave, c ~ c~ , so that:

8) (70)

In the rate independent theory applied to shock wave evaluation, the problem

encountered with work hardening, that the plastic work absorbed as the shock

wave traverses an element cannot be determined without analysing the shock

structure still arises, for plastic work appears in the energy conservation

equation. A rate of strain term is needed to determine the shock structure.

Similarly in the plastic steady wave structure evaluation, equation. (65) to

(68) are still all needed, since plastic work appears on the left hand side

27
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of (68). Thus the form of solution is the same for a strain—hardening material

as for a work-hardening one.

However, the term (1 — ‘i)w on the left hand side of the energy balance

equation (68) is likely to be meali compared with other terms in the equation

if the impact stress is many times larger than the yield stress which is usu-

ally the case in plate slap experiments. The term (1 — y)w represents the

part of the plastic work which is stored in the material as dislocations and

lattice .fects following plastic flow. The factor (1 — y) 
~~ 0.1 , for most

of- the plastic work is dissipated directly into heat. The plastic work it—

self will be much aller than other terms in the energy balance equation

since, for example, it is given by the yield stress times the plastic strain V

incrsment while the energy absorbed in volume compression is of the order of

the total stress multiplid by the strain increment. Thus very little error

will be involved in neglecting the term (1 — y)w and then the analysis

simplifies since plastic work does not appear as a variable. Eq. (68) then

gives the image of the shock structure in the (c1,0) plane and (67) determines

the plastic strain. The differential relation (65) is needed only to obtain

the wave profile in space. Thus a much simpler solution for the steady wave

results. In view of this simple structure, for practical calculations it

would be advantageous to consider waves of increasing and decreasing strain

separately and use a direct overstress form for the plastic strain rate in-

stead of (28) in terms of the variable a , which, because of its quadratic

nature applies to both type of waves. In that case the factor (c
1 

— 34 I 2)

would not be needed to generate the appropriate sign for , which could be

included separately.
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4. Discussion and Conclusions

The analysis of shock wave propagation through elastic—plastic materials

which exhibit work—hardening, s~rain—rate dependent response to stress requires

the solution of a differential equation associated with the structure of a

steady plastic wave. The theory includes thermo—mechanical coupling , and a—

bout 10% of the plastic work is assumed absorbed in the resulting dislocation

and lattice—defect distribution as measured by Quinney and Taylor [17]. This

component of the plastic work absorbed is small compared with the total work

done as the wave traverses a section , so that a negligible effect  on the

process will arise from assuming this componen t of the absorbed energy to be

dissipated into heat as is the rest of the plastic work. In the case of strain—

hardening, this minor change in the thermo—mechanical coupling process permits

the stress generated across a plastic shock wave to be evaluated using the

conservation relations only, which are algebraic, rather than diff erential in

nature. This offers the possibility of much more convenient evaluation of the

stress range and total and plastic strain generated. For rate dependent

elastic—plastic materials work—hardening and strain—hardening laws lead to

qualitatively different behavior, which is not so for the corresponding rate—

independent theory. Strain—hardeninR mpp.ars to reproduce exoerimental findinas

and has been used by Herrmann in his studies of wave propagation [9, 16].

Since the relations are algebraic, the jumps in the dependent variables can

be determined without evaluating the shock structure , and it may be adequate

in many cases to utilize this information in design calculations.

Much of the experimental work on the measurement of stress—wave profiles

has been concerned with elucidatthg the strain—rate response law governing
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plastic flow. As described in Section 3, the relationship between wave

profiles and the rate of strain law is associated with the increase in stress

needed to lift the equilibrium stress—strain relation up to the dynamically

imposed Rayleigh line including the thermal influences on these relations.

However, possible difficulties of interpretation arise in the case of materials

having a marked microstructure since this itself will also tend to broaden

the wave front and thus generate a lower average strain—rate. In the case of

poly—crystalline metals, this can arise from anisotropy of the crystallites,

and particularly in the case of initiation of plastic flow, because of the

concomitant residual stress in the crystallites resulting from the process

used to form the specimen. These influences have been coimsented on by Herrmann

[9]. For porous media the effect of inhomogeneity can be much more marked,

and the local micro—motion of the collapsing pores for an element in com-

pression can have an appreciable influence on the average stress—strain rela-

tion. It was shown in [18] that the inertia forces of the material adjacent

to the collapsing pores necessitate an increase in the average compressive

stress according t. a strain—rate dependent relation. This is so since

even at constant average rate of strain, the surfa ce of the closing pores must

accelerate as the pore surface decreases in area in order to accomsodate the

effectively incompressible deformation due to plastic flow. This requires

additional compressive stress proportional to the strain rate. This con-

stitutes a system rate of strain influence superposed on whatever material

rate of strain characteristic exists. Such an effect will contribute to the

wave profile generated. It may therefore be important to incorporate such

effects into investigations of basic material strain— rate influences. Moreover

30
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the existence of inhomogeneicy will modify wave profiles evaluated on the

assumption of homogeneous material, which may dictate against placing reliance

on computed wave profiles. This may lend additional encouragement to attempts

to satisfy design requirements on the basis of calculations of jumps of stress

and strain across the wave, while reducing the significance of the detailed

stress profile to a minimum.

V 
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Fig. 1. Lagrange (X) and Euler (x) coordinates systems.
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